lfs/chapter07/usage.xml

206 lines
8.3 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE sect1 PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % general-entities SYSTEM "../general.ent">
%general-entities;
]>
<sect1 id="ch-scripts-usage">
<?dbhtml filename="usage.html"?>
<title>How Do These Bootscripts Work?</title>
<indexterm zone="ch-scripts-usage">
<primary sortas="a-Bootscripts">Bootscripts</primary>
<secondary>usage</secondary>
</indexterm>
<para>Linux uses a special booting facility named SysVinit that is based on a
concept of <emphasis>run-levels</emphasis>. It can be quite different from one
system to another, so it cannot be assumed that because things worked in one
particular Linux distribution, they should work the same in LFS too. LFS has its
own way of doing things, but it respects generally accepted standards.</para>
<para>SysVinit (which will be referred to as <quote>init</quote> from now on)
works using a run-levels scheme. There are seven (numbered 0 to 6) run-levels
(actually, there are more run-levels, but they are for special cases and are
generally not used. See <filename>init(8)</filename> for more details), and
each one of those corresponds to the actions the computer is supposed to
perform when it starts up. The default run-level is 3. Here are the
descriptions of the different run-levels as they are implemented:</para>
<literallayout>0: halt the computer
1: single-user mode
2: multi-user mode without networking
3: multi-user mode with networking
4: reserved for customization, otherwise does the same as 3
5: same as 4, it is usually used for GUI login (like X's <command>xdm</command> or KDE's <command>kdm</command>)
6: reboot the computer</literallayout>
<sect2 id="conf-sysvinit" role="configuration">
<title>Configuring Sysvinit</title>
<indexterm zone="conf-sysvinit">
<primary sortas="a-Sysvinit">Sysvinit</primary>
<secondary>configuring</secondary>
</indexterm>
<indexterm zone="conf-sysvinit">
<primary sortas="e-/etc/inittab">/etc/inittab</primary>
</indexterm>
<para>During the kernel initialization, the first program that is run
is either specified on the command line or, by default
<command>init</command>. This program reads the initialization file
<filename>/etc/inittab</filename>. Create this file with:</para>
<screen><userinput>cat &gt; /etc/inittab &lt;&lt; "EOF"
<literal># Begin /etc/inittab
id:3:initdefault:
si::sysinit:/etc/rc.d/init.d/rc S
l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6
ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
su:S016:once:/sbin/sulogin
1:2345:respawn:/sbin/agetty --noclear tty1 9600
2:2345:respawn:/sbin/agetty tty2 9600
3:2345:respawn:/sbin/agetty tty3 9600
4:2345:respawn:/sbin/agetty tty4 9600
5:2345:respawn:/sbin/agetty tty5 9600
6:2345:respawn:/sbin/agetty tty6 9600
# End /etc/inittab</literal>
EOF</userinput></screen>
<para>An explanation of this initialization file is in the man page for
<emphasis>inittab</emphasis>. For LFS, the key command that is run is
<command>rc</command>. The intialization file above will instruct
<command>rc</command> to run all the scripts starting with an S in the
<filename class="directory">/etc/rc.d/rcS.d</filename> directory
followed by all the scripts starting with an S in the <filename
class="directory">/etc/rc.d/rc?.d</filename> directory where the question
mark is specified by the initdefault value.</para>
<para>As a convenience, the <command>rc</command> script reads a library of
functions in <filename class="directory">/lib/lsb/init-functions</filename>.
This library also reads an optional configuration file,
<filename>/etc/sysconfig/rc.site</filename>. Any of the system
configuration file parameters described in subsequent sections can be
alternatively placed in this file allowing consolidation of all system
parameters in this one file.</para>
<para>As a debugging convenience, the functions script also logs all output
to <filename>/run/var/bootlog</filename>. Since the <filename
class="directory">/run</filename> directory is a tmpfs, this file is not
persistent across boots, however it is appended to the more permanent file
<filename>/var/log/boot.log</filename> at the end of the boot process.</para>
</sect2>
<sect2 id="init-levels" >
<title>Changing Run Levels</title>
<para>Changing run-levels is done with <command>init
<replaceable>&lt;runlevel&gt;</replaceable></command>, where
<replaceable>&lt;runlevel&gt;</replaceable> is the target run-level. For example, to
reboot the computer, a user could issue the <command>init 6</command> command,
which is an alias for the <command>reboot</command> command. Likewise,
<command>init 0</command> is an alias for the <command>halt</command>
command.</para>
<para>There are a number of directories under <filename
class="directory">/etc/rc.d</filename> that look like <filename
class="directory">rc?.d</filename> (where ? is the number of the run-level) and
<filename class="directory">rcsysinit.d</filename>, all containing a number of
symbolic links. Some begin with a <emphasis>K</emphasis>, the others begin with
an <emphasis>S</emphasis>, and all of them have two numbers following the
initial letter. The K means to stop (kill) a service and the S means to start a
service. The numbers determine the order in which the scripts are run, from 00
to 99&mdash;the lower the number the earlier it gets executed. When
<command>init</command> switches to another run-level, the appropriate services
are either started or stopped, depending on the runlevel chosen.</para>
<para>The real scripts are in <filename
class="directory">/etc/rc.d/init.d</filename>. They do the actual work, and
the symlinks all point to them. K links and S links point to
the same script in <filename class="directory">/etc/rc.d/init.d</filename>.
This is because the scripts can be called with different parameters like
<parameter>start</parameter>, <parameter>stop</parameter>,
<parameter>restart</parameter>, <parameter>reload</parameter>, and
<parameter>status</parameter>. When a K link is encountered, the appropriate
script is run with the <parameter>stop</parameter> argument. When an S link
is encountered, the appropriate script is run with the
<parameter>start</parameter> argument.</para>
<para>There is one exception to this explanation. Links that start
with an <emphasis>S</emphasis> in the <filename
class="directory">rc0.d</filename> and <filename
class="directory">rc6.d</filename> directories will not cause anything
to be started. They will be called with the parameter
<parameter>stop</parameter> to stop something. The logic behind this
is that when a user is going to reboot or halt the system, nothing
needs to be started. The system only needs to be stopped.</para>
<para>These are descriptions of what the arguments make the scripts
do:</para>
<variablelist>
<varlistentry>
<term><parameter>start</parameter></term>
<listitem>
<para>The service is started.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>stop</parameter></term>
<listitem>
<para>The service is stopped.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>restart</parameter></term>
<listitem>
<para>The service is stopped and then started again.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>reload</parameter></term>
<listitem>
<para>The configuration of the service is updated.
This is used after the configuration file of a service was modified, when
the service does not need to be restarted.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>status</parameter></term>
<listitem>
<para>Tells if the service is running and with which PIDs.</para>
</listitem>
</varlistentry>
</variablelist>
<para>Feel free to modify the way the boot process works (after all,
it is your own LFS system). The files given here are an example of how
it can be done.</para>
</sect2>
</sect1>