OpenTTD/src/pathfinder/npf/npf.cpp
Patric Stout f87fe395a7
Fix: pathfinders always tried to avoid docking tiles (even if nothing was on them) (#9522)
When coming across any docking tile (for example, all tiles around
an oilrig are docking tiles), it always at least added a penalty
of 3 times a normal tile, even when there are no ships on them.

In result, the pathfinder got suggested to always go around docking
tiles. This was most likely not the intention of the change made in
31db4f8d5e.
2021-08-31 09:57:44 +02:00

1323 lines
51 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file npf.cpp Implementation of the NPF pathfinder. */
#include "../../stdafx.h"
#include "../../debug.h"
#include "../../network/network.h"
#include "../../viewport_func.h"
#include "../../ship.h"
#include "../../roadstop_base.h"
#include "../../vehicle_func.h"
#include "../pathfinder_func.h"
#include "../pathfinder_type.h"
#include "../follow_track.hpp"
#include "aystar.h"
#include "../../safeguards.h"
static const uint NPF_HASH_BITS = 12; ///< The size of the hash used in pathfinding. Just changing this value should be sufficient to change the hash size. Should be an even value.
/* Do no change below values */
static const uint NPF_HASH_SIZE = 1 << NPF_HASH_BITS;
static const uint NPF_HASH_HALFBITS = NPF_HASH_BITS / 2;
static const uint NPF_HASH_HALFMASK = (1 << NPF_HASH_HALFBITS) - 1;
/** Meant to be stored in AyStar.targetdata */
struct NPFFindStationOrTileData {
TileIndex dest_coords; ///< An indication of where the station is, for heuristic purposes, or the target tile
StationID station_index; ///< station index we're heading for, or INVALID_STATION when we're heading for a tile
bool reserve_path; ///< Indicates whether the found path should be reserved
StationType station_type; ///< The type of station we're heading for
bool not_articulated; ///< The (road) vehicle is not articulated
const Vehicle *v; ///< The vehicle we are pathfinding for
};
/** Indices into AyStar.userdata[] */
struct AyStarUserData {
Owner owner;
TransportType type;
RailTypes railtypes;
RoadTypes roadtypes;
uint subtype;
};
/** Indices into AyStarNode.userdata[] */
enum AyStarNodeUserDataType {
NPF_TRACKDIR_CHOICE = 0, ///< The trackdir chosen to get here
NPF_NODE_FLAGS,
};
/** Flags for AyStarNode.userdata[NPF_NODE_FLAGS]. Use NPFSetFlag() and NPFGetFlag() to use them. */
enum NPFNodeFlag {
NPF_FLAG_SEEN_SIGNAL, ///< Used to mark that a signal was seen on the way, for rail only
NPF_FLAG_2ND_SIGNAL, ///< Used to mark that two signals were seen, rail only
NPF_FLAG_3RD_SIGNAL, ///< Used to mark that three signals were seen, rail only
NPF_FLAG_REVERSE, ///< Used to mark that this node was reached from the second start node, if applicable
NPF_FLAG_LAST_SIGNAL_RED, ///< Used to mark that the last signal on this path was red
NPF_FLAG_LAST_SIGNAL_BLOCK, ///< Used to mark that the last signal on this path was a block signal
NPF_FLAG_IGNORE_START_TILE, ///< Used to mark that the start tile is invalid, and searching should start from the second tile on
NPF_FLAG_TARGET_RESERVED, ///< Used to mark that the possible reservation target is already reserved
NPF_FLAG_IGNORE_RESERVED, ///< Used to mark that reserved tiles should be considered impassable
};
/** Meant to be stored in AyStar.userpath */
struct NPFFoundTargetData {
uint best_bird_dist; ///< The best heuristic found. Is 0 if the target was found
uint best_path_dist; ///< The shortest path. Is UINT_MAX if no path is found
Trackdir best_trackdir; ///< The trackdir that leads to the shortest path/closest birds dist
AyStarNode node; ///< The node within the target the search led us to
bool res_okay; ///< True if a path reservation could be made
};
static AyStar _npf_aystar;
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
*/
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
static const uint _trackdir_length[TRACKDIR_END] = {
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
0, 0,
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};
/**
* Returns the current value of the given flag on the given AyStarNode.
*/
static inline bool NPFGetFlag(const AyStarNode *node, NPFNodeFlag flag)
{
return HasBit(node->user_data[NPF_NODE_FLAGS], flag);
}
/**
* Sets the given flag on the given AyStarNode to the given value.
*/
static inline void NPFSetFlag(AyStarNode *node, NPFNodeFlag flag, bool value)
{
SB(node->user_data[NPF_NODE_FLAGS], flag, 1, value);
}
bool CheckIgnoreFirstTile(const PathNode *node)
{
return (node->parent == nullptr && HasBit(node->node.user_data[NPF_NODE_FLAGS], NPF_FLAG_IGNORE_START_TILE));
}
/**
* Calculates the minimum distance travelled to get from t0 to t1 when only
* using tracks (ie, only making 45 degree turns). Returns the distance in the
* NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to
* prevent rounding.
*/
static uint NPFDistanceTrack(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
const uint straightTracks = 2 * std::min(dx, dy); // The number of straight (not full length) tracks
/* OPTIMISATION:
* Original: diagTracks = max(dx, dy) - min(dx,dy);
* Proof:
* (dx+dy) - straightTracks == (min + max) - straightTracks = min + max - 2 * min = max - min */
const uint diagTracks = dx + dy - straightTracks; // The number of diagonal (full tile length) tracks.
/* Don't factor out NPF_TILE_LENGTH below, this will round values and lose
* precision */
return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH;
}
/**
* Calculates a hash value for use in the NPF.
* @param key1 The TileIndex of the tile to hash
* @param key2 The Trackdir of the track on the tile.
*
* @todo Think of a better hash.
*/
static uint NPFHash(uint key1, uint key2)
{
/* TODO: think of a better hash? */
uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
uint part2 = TileY(key1) & NPF_HASH_HALFMASK;
assert(IsValidTrackdir((Trackdir)key2));
assert(IsValidTile(key1));
return ((part1 << NPF_HASH_HALFBITS | part2) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE;
}
static int32 NPFCalcZero(AyStar *as, AyStarNode *current, OpenListNode *parent)
{
return 0;
}
/* Calculates the heuristic to the target station or tile. For train stations, it
* takes into account the direction of approach.
*/
static int32 NPFCalcStationOrTileHeuristic(AyStar *as, AyStarNode *current, OpenListNode *parent)
{
NPFFindStationOrTileData *fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData *ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist;
AyStarUserData *user = (AyStarUserData *)as->user_data;
/* aim for the closest station tile */
if (fstd->station_index != INVALID_STATION) {
to = CalcClosestStationTile(fstd->station_index, from, fstd->station_type);
}
if (user->type == TRANSPORT_ROAD) {
/* Since roads only have diagonal pieces, we use manhattan distance here */
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
} else {
/* Ships and trains can also go diagonal, so the minimum distance is shorter */
dist = NPFDistanceTrack(from, to);
}
Debug(npf, 4, "Calculating H for: ({}, {}). Result: {}", TileX(current->tile), TileY(current->tile), dist);
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = (Trackdir)current->user_data[NPF_TRACKDIR_CHOICE];
}
return dist;
}
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
* get here, either getting it from the current choice or from the parent's
* choice */
static void NPFFillTrackdirChoice(AyStarNode *current, OpenListNode *parent)
{
if (parent->path.parent == nullptr) {
Trackdir trackdir = current->direction;
/* This is a first order decision, so we'd better save the
* direction we chose */
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
Debug(npf, 6, "Saving trackdir: 0x{:X}", trackdir);
} else {
/* We've already made the decision, so just save our parent's decision */
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
}
}
/* Will return the cost of the tunnel. If it is an entry, it will return the
* cost of that tile. If the tile is an exit, it will return the tunnel length
* including the exit tile. Requires that this is a Tunnel tile */
static uint NPFTunnelCost(AyStarNode *current)
{
DiagDirection exitdir = TrackdirToExitdir(current->direction);
TileIndex tile = current->tile;
if (GetTunnelBridgeDirection(tile) == ReverseDiagDir(exitdir)) {
/* We just popped out if this tunnel, since were
* facing the tunnel exit */
return NPF_TILE_LENGTH * (GetTunnelBridgeLength(current->tile, GetOtherTunnelEnd(current->tile)) + 1);
/* @todo: Penalty for tunnels? */
} else {
/* We are entering the tunnel, the enter tile is just a
* straight track */
return NPF_TILE_LENGTH;
}
}
static inline uint NPFBridgeCost(AyStarNode *current)
{
return NPF_TILE_LENGTH * GetTunnelBridgeLength(current->tile, GetOtherBridgeEnd(current->tile));
}
static uint NPFSlopeCost(AyStarNode *current)
{
TileIndex next = current->tile + TileOffsByDiagDir(TrackdirToExitdir(current->direction));
/* Get center of tiles */
int x1 = TileX(current->tile) * TILE_SIZE + TILE_SIZE / 2;
int y1 = TileY(current->tile) * TILE_SIZE + TILE_SIZE / 2;
int x2 = TileX(next) * TILE_SIZE + TILE_SIZE / 2;
int y2 = TileY(next) * TILE_SIZE + TILE_SIZE / 2;
int dx4 = (x2 - x1) / 4;
int dy4 = (y2 - y1) / 4;
/* Get the height on both sides of the tile edge.
* Avoid testing the height on the tile-center. This will fail for halftile-foundations.
*/
int z1 = GetSlopePixelZ(x1 + dx4, y1 + dy4);
int z2 = GetSlopePixelZ(x2 - dx4, y2 - dy4);
if (z2 - z1 > 1) {
/* Slope up */
return _settings_game.pf.npf.npf_rail_slope_penalty;
}
return 0;
/* Should we give a bonus for slope down? Probably not, we
* could just subtract that bonus from the penalty, because
* there is only one level of steepness... */
}
static uint NPFReservedTrackCost(AyStarNode *current)
{
TileIndex tile = current->tile;
TrackBits track = TrackToTrackBits(TrackdirToTrack(current->direction));
TrackBits res = GetReservedTrackbits(tile);
if (NPFGetFlag(current, NPF_FLAG_3RD_SIGNAL) || NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_BLOCK) || ((res & track) == TRACK_BIT_NONE && !TracksOverlap(res | track))) return 0;
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
DiagDirection exitdir = TrackdirToExitdir(current->direction);
if (GetTunnelBridgeDirection(tile) == ReverseDiagDir(exitdir)) {
return _settings_game.pf.npf.npf_rail_pbs_cross_penalty * (GetTunnelBridgeLength(tile, GetOtherTunnelBridgeEnd(tile)) + 1);
}
}
return _settings_game.pf.npf.npf_rail_pbs_cross_penalty;
}
/**
* Mark tiles by mowing the grass when npf debug level >= 1.
* Will not work for multiplayer games, since it can (will) cause desyncs.
*/
static void NPFMarkTile(TileIndex tile)
{
if (_debug_npf_level < 1 || _networking) return;
switch (GetTileType(tile)) {
case MP_RAILWAY:
/* DEBUG: mark visited tiles by mowing the grass under them ;-) */
if (!IsRailDepot(tile)) {
SetRailGroundType(tile, RAIL_GROUND_BARREN);
MarkTileDirtyByTile(tile);
}
break;
case MP_ROAD:
if (!IsRoadDepot(tile)) {
SetRoadside(tile, ROADSIDE_BARREN);
MarkTileDirtyByTile(tile);
}
break;
default:
break;
}
}
static Vehicle *CountShipProc(Vehicle *v, void *data)
{
uint *count = (uint *)data;
/* Ignore other vehicles (aircraft) and ships inside depot. */
if (v->type == VEH_SHIP && (v->vehstatus & VS_HIDDEN) == 0) (*count)++;
return nullptr;
}
static int32 NPFWaterPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent)
{
/* TileIndex tile = current->tile; */
int32 cost = 0;
Trackdir trackdir = current->direction;
cost = _trackdir_length[trackdir]; // Should be different for diagonal tracks
if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir)) {
cost += _settings_game.pf.npf.npf_buoy_penalty; // A small penalty for going over buoys
}
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) {
cost += _settings_game.pf.npf.npf_water_curve_penalty;
}
if (IsDockingTile(current->tile)) {
/* Check docking tile for occupancy */
uint count = 0;
HasVehicleOnPos(current->tile, &count, &CountShipProc);
cost += count * 3 * _trackdir_length[trackdir];
}
/* @todo More penalties? */
return cost;
}
/* Determine the cost of this node, for road tracks */
static int32 NPFRoadPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent)
{
TileIndex tile = current->tile;
int32 cost = 0;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
cost = IsTunnel(tile) ? NPFTunnelCost(current) : NPFBridgeCost(current);
break;
case MP_ROAD:
cost = NPF_TILE_LENGTH;
/* Increase the cost for level crossings */
if (IsLevelCrossing(tile)) cost += _settings_game.pf.npf.npf_crossing_penalty;
break;
case MP_STATION: {
cost = NPF_TILE_LENGTH;
const RoadStop *rs = RoadStop::GetByTile(tile, GetRoadStopType(tile));
if (IsDriveThroughStopTile(tile)) {
/* Increase the cost for drive-through road stops */
cost += _settings_game.pf.npf.npf_road_drive_through_penalty;
DiagDirection dir = TrackdirToExitdir(current->direction);
if (!RoadStop::IsDriveThroughRoadStopContinuation(tile, tile - TileOffsByDiagDir(dir))) {
/* When we're the first road stop in a 'queue' of them we increase
* cost based on the fill percentage of the whole queue. */
const RoadStop::Entry *entry = rs->GetEntry(dir);
cost += entry->GetOccupied() * _settings_game.pf.npf.npf_road_dt_occupied_penalty / entry->GetLength();
}
} else {
/* Increase cost for filled road stops */
cost += _settings_game.pf.npf.npf_road_bay_occupied_penalty * (!rs->IsFreeBay(0) + !rs->IsFreeBay(1)) / 2;
}
break;
}
default:
break;
}
/* Determine extra costs */
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns. Road vehicles only really drive diagonal, turns are
* represented by non-diagonal tracks */
if (!IsDiagonalTrackdir(current->direction)) {
cost += _settings_game.pf.npf.npf_road_curve_penalty;
}
NPFMarkTile(tile);
Debug(npf, 4, "Calculating G for: ({}, {}). Result: {}", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Determine the cost of this node, for railway tracks */
static int32 NPFRailPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent)
{
TileIndex tile = current->tile;
Trackdir trackdir = current->direction;
int32 cost = 0;
/* HACK: We create a OpenListNode manually, so we can call EndNodeCheck */
OpenListNode new_node;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
cost = IsTunnel(tile) ? NPFTunnelCost(current) : NPFBridgeCost(current);
break;
case MP_RAILWAY:
cost = _trackdir_length[trackdir]; // Should be different for diagonal tracks
break;
case MP_ROAD: // Railway crossing
cost = NPF_TILE_LENGTH;
break;
case MP_STATION:
/* We give a station tile a penalty. Logically we would only want to give
* station tiles that are not our destination this penalty. This would
* discourage trains to drive through busy stations. But, we can just
* give any station tile a penalty, because every possible route will get
* this penalty exactly once, on its end tile (if it's a station) and it
* will therefore not make a difference. */
cost = NPF_TILE_LENGTH + _settings_game.pf.npf.npf_rail_station_penalty;
if (IsRailWaypoint(tile)) {
NPFFindStationOrTileData *fstd = (NPFFindStationOrTileData*)as->user_target;
if (fstd->v->current_order.IsType(OT_GOTO_WAYPOINT) && GetStationIndex(tile) == fstd->v->current_order.GetDestination()) {
/* This waypoint is our destination; maybe this isn't an unreserved
* one, so check that and if so see that as the last signal being
* red. This way waypoints near stations should work better. */
const Train *train = Train::From(fstd->v);
CFollowTrackRail ft(train);
TileIndex t = tile;
Trackdir td = trackdir;
while (ft.Follow(t, td)) {
assert(t != ft.m_new_tile);
t = ft.m_new_tile;
if (KillFirstBit(ft.m_new_td_bits) != TRACKDIR_BIT_NONE) {
/* We encountered a junction; it's going to be too complex to
* handle this perfectly, so just bail out. There is no simple
* free path, so try the other possibilities. */
td = INVALID_TRACKDIR;
break;
}
td = RemoveFirstTrackdir(&ft.m_new_td_bits);
/* If this is a safe waiting position we're done searching for it */
if (IsSafeWaitingPosition(train, t, td, true, _settings_game.pf.forbid_90_deg)) break;
}
if (td == INVALID_TRACKDIR ||
!IsSafeWaitingPosition(train, t, td, true, _settings_game.pf.forbid_90_deg) ||
!IsWaitingPositionFree(train, t, td, _settings_game.pf.forbid_90_deg)) {
cost += _settings_game.pf.npf.npf_rail_lastred_penalty;
}
}
}
break;
default:
break;
}
/* Determine extra costs */
/* Check for signals */
if (IsTileType(tile, MP_RAILWAY)) {
if (HasSignalOnTrackdir(tile, trackdir)) {
SignalType sigtype = GetSignalType(tile, TrackdirToTrack(trackdir));
/* Ordinary track with signals */
if (GetSignalStateByTrackdir(tile, trackdir) == SIGNAL_STATE_RED) {
/* Signal facing us is red */
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
/* Penalize the first signal we
* encounter, if it is red */
/* Is this a presignal exit or combo? */
if (!IsPbsSignal(sigtype)) {
if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO) {
/* Penalise exit and combo signals differently (heavier) */
cost += _settings_game.pf.npf.npf_rail_firstred_exit_penalty;
} else {
cost += _settings_game.pf.npf.npf_rail_firstred_penalty;
}
}
}
/* Record the state of this signal. Path signals are assumed to
* be green as the signal state of them has no meaning for this. */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, !IsPbsSignal(sigtype));
} else {
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
}
if (NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
if (NPFGetFlag(current, NPF_FLAG_2ND_SIGNAL)) {
NPFSetFlag(current, NPF_FLAG_3RD_SIGNAL, true);
} else {
NPFSetFlag(current, NPF_FLAG_2ND_SIGNAL, true);
}
} else {
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
}
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_BLOCK, !IsPbsSignal(sigtype));
}
if (HasPbsSignalOnTrackdir(tile, ReverseTrackdir(trackdir)) && !NPFGetFlag(current, NPF_FLAG_3RD_SIGNAL)) {
cost += _settings_game.pf.npf.npf_rail_pbs_signal_back_penalty;
}
}
/* Penalise the tile if it is a target tile and the last signal was
* red */
/* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell
* of course... */
new_node.path.node = *current;
if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED)) {
cost += _settings_game.pf.npf.npf_rail_lastred_penalty;
}
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) {
cost += _settings_game.pf.npf.npf_rail_curve_penalty;
}
/* TODO, with realistic acceleration, also the amount of straight track between
* curves should be taken into account, as this affects the speed limit. */
/* Check for reverse in depot */
if (IsRailDepotTile(tile) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) {
/* Penalise any depot tile that is not the last tile in the path. This
* _should_ penalise every occurrence of reversing in a depot (and only
* that) */
cost += _settings_game.pf.npf.npf_rail_depot_reverse_penalty;
}
/* Check for occupied track */
cost += NPFReservedTrackCost(current);
NPFMarkTile(tile);
Debug(npf, 4, "Calculating G for: ({}, {}). Result: {}", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Will find any depot */
static int32 NPFFindDepot(const AyStar *as, const OpenListNode *current)
{
AyStarUserData *user = (AyStarUserData *)as->user_data;
/* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below,
* since checking the cache not that much faster than the actual check */
return IsDepotTypeTile(current->path.node.tile, user->type) ?
AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
}
/** Find any safe and free tile. */
static int32 NPFFindSafeTile(const AyStar *as, const OpenListNode *current)
{
const Train *v = Train::From(((NPFFindStationOrTileData *)as->user_target)->v);
return (IsSafeWaitingPosition(v, current->path.node.tile, current->path.node.direction, true, _settings_game.pf.forbid_90_deg) &&
IsWaitingPositionFree(v, current->path.node.tile, current->path.node.direction, _settings_game.pf.forbid_90_deg)) ?
AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
}
/* Will find a station identified using the NPFFindStationOrTileData */
static int32 NPFFindStationOrTile(const AyStar *as, const OpenListNode *current)
{
NPFFindStationOrTileData *fstd = (NPFFindStationOrTileData*)as->user_target;
const AyStarNode *node = &current->path.node;
TileIndex tile = node->tile;
if (fstd->station_index == INVALID_STATION && tile == fstd->dest_coords) return AYSTAR_FOUND_END_NODE;
if (fstd->v->type == VEH_SHIP) {
/* Ships do not actually reach the destination station, so we check for a docking tile instead. */
if (IsDockingTile(tile) && IsShipDestinationTile(tile, fstd->station_index)) return AYSTAR_FOUND_END_NODE;
return AYSTAR_DONE;
}
if (IsTileType(tile, MP_STATION) && GetStationIndex(tile) == fstd->station_index) {
if (fstd->v->type == VEH_TRAIN) return AYSTAR_FOUND_END_NODE;
assert(fstd->v->type == VEH_ROAD);
/* Only if it is a valid station *and* we can stop there */
if (GetStationType(tile) == fstd->station_type && (fstd->not_articulated || IsDriveThroughStopTile(tile))) return AYSTAR_FOUND_END_NODE;
}
return AYSTAR_DONE;
}
/**
* Find the node containing the first signal on the path.
*
* If the first signal is on the very first two tiles of the path,
* the second signal is returned. If no suitable signal is present, the
* last node of the path is returned.
*/
static const PathNode *FindSafePosition(PathNode *path, const Train *v)
{
/* If there is no signal, reserve the whole path. */
PathNode *sig = path;
for (; path->parent != nullptr; path = path->parent) {
if (IsSafeWaitingPosition(v, path->node.tile, path->node.direction, true, _settings_game.pf.forbid_90_deg)) {
sig = path;
}
}
return sig;
}
/**
* Lift the reservation of the tiles from @p start till @p end, excluding @p end itself.
*/
static void ClearPathReservation(const PathNode *start, const PathNode *end)
{
bool first_run = true;
for (; start != end; start = start->parent) {
if (IsRailStationTile(start->node.tile) && first_run) {
SetRailStationPlatformReservation(start->node.tile, TrackdirToExitdir(start->node.direction), false);
} else {
UnreserveRailTrack(start->node.tile, TrackdirToTrack(start->node.direction));
}
first_run = false;
}
}
/**
* To be called when @p current contains the (shortest route to) the target node.
* Will fill the contents of the NPFFoundTargetData using
* AyStarNode[NPF_TRACKDIR_CHOICE]. If requested, path reservation
* is done here.
*/
static void NPFSaveTargetData(AyStar *as, OpenListNode *current)
{
AyStarUserData *user = (AyStarUserData *)as->user_data;
NPFFoundTargetData *ftd = (NPFFoundTargetData*)as->user_path;
ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE];
ftd->best_path_dist = current->g;
ftd->best_bird_dist = 0;
ftd->node = current->path.node;
ftd->res_okay = false;
if (as->user_target != nullptr && ((NPFFindStationOrTileData*)as->user_target)->reserve_path && user->type == TRANSPORT_RAIL) {
/* Path reservation is requested. */
const Train *v = Train::From(((NPFFindStationOrTileData *)as->user_target)->v);
const PathNode *target = FindSafePosition(&current->path, v);
ftd->node = target->node;
/* If the target is a station skip to platform end. */
if (IsRailStationTile(target->node.tile)) {
DiagDirection dir = TrackdirToExitdir(target->node.direction);
uint len = Station::GetByTile(target->node.tile)->GetPlatformLength(target->node.tile, dir);
TileIndex end_tile = TILE_ADD(target->node.tile, (len - 1) * TileOffsByDiagDir(dir));
/* Update only end tile, trackdir of a station stays the same. */
ftd->node.tile = end_tile;
if (!IsWaitingPositionFree(v, end_tile, target->node.direction, _settings_game.pf.forbid_90_deg)) return;
SetRailStationPlatformReservation(target->node.tile, dir, true);
SetRailStationReservation(target->node.tile, false);
} else {
if (!IsWaitingPositionFree(v, target->node.tile, target->node.direction, _settings_game.pf.forbid_90_deg)) return;
}
for (const PathNode *cur = target; cur->parent != nullptr; cur = cur->parent) {
if (!TryReserveRailTrack(cur->node.tile, TrackdirToTrack(cur->node.direction))) {
/* Reservation failed, undo. */
ClearPathReservation(target, cur);
return;
}
}
ftd->res_okay = true;
}
}
/**
* Finds out if a given company's vehicles are allowed to enter a given tile.
* @param owner The owner of the vehicle.
* @param tile The tile that is about to be entered.
* @param enterdir The direction in which the vehicle wants to enter the tile.
* @return true if the vehicle can enter the tile.
* @todo This function should be used in other places than just NPF,
* maybe moved to another file too.
*/
static bool CanEnterTileOwnerCheck(Owner owner, TileIndex tile, DiagDirection enterdir)
{
if (IsTileType(tile, MP_RAILWAY) || // Rail tile (also rail depot)
HasStationTileRail(tile) || // Rail station tile/waypoint
IsRoadDepotTile(tile) || // Road depot tile
IsStandardRoadStopTile(tile)) { // Road station tile (but not drive-through stops)
return IsTileOwner(tile, owner); // You need to own these tiles entirely to use them
}
switch (GetTileType(tile)) {
case MP_ROAD:
/* rail-road crossing : are we looking at the railway part? */
if (IsLevelCrossing(tile) &&
DiagDirToAxis(enterdir) != GetCrossingRoadAxis(tile)) {
return IsTileOwner(tile, owner); // Railway needs owner check, while the street is public
}
break;
case MP_TUNNELBRIDGE:
if (GetTunnelBridgeTransportType(tile) == TRANSPORT_RAIL) {
return IsTileOwner(tile, owner);
}
break;
default:
break;
}
return true; // no need to check
}
/**
* Returns the direction the exit of the depot on the given tile is facing.
*/
static DiagDirection GetDepotDirection(TileIndex tile, TransportType type)
{
assert(IsDepotTypeTile(tile, type));
switch (type) {
case TRANSPORT_RAIL: return GetRailDepotDirection(tile);
case TRANSPORT_ROAD: return GetRoadDepotDirection(tile);
case TRANSPORT_WATER: return GetShipDepotDirection(tile);
default: return INVALID_DIAGDIR; // Not reached
}
}
/** Tests if a tile is a road tile with a single tramtrack (tram can reverse) */
static DiagDirection GetSingleTramBit(TileIndex tile)
{
if (IsNormalRoadTile(tile)) {
RoadBits rb = GetRoadBits(tile, RTT_TRAM);
switch (rb) {
case ROAD_NW: return DIAGDIR_NW;
case ROAD_SW: return DIAGDIR_SW;
case ROAD_SE: return DIAGDIR_SE;
case ROAD_NE: return DIAGDIR_NE;
default: break;
}
}
return INVALID_DIAGDIR;
}
/**
* Tests if a tile can be entered or left only from one side.
*
* Depots, non-drive-through roadstops, and tiles with single trambits are tested.
*
* @param tile The tile of interest.
* @param type The transporttype of the vehicle.
* @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle.
* @return The single entry/exit-direction of the tile, or INVALID_DIAGDIR if there are more or less directions
*/
static DiagDirection GetTileSingleEntry(TileIndex tile, TransportType type, uint subtype)
{
if (type != TRANSPORT_WATER && IsDepotTypeTile(tile, type)) return GetDepotDirection(tile, type);
if (type == TRANSPORT_ROAD) {
if (IsStandardRoadStopTile(tile)) return GetRoadStopDir(tile);
if ((RoadTramType)subtype == RTT_TRAM) return GetSingleTramBit(tile);
}
return INVALID_DIAGDIR;
}
/**
* Tests if a vehicle must reverse on a tile.
*
* @param tile The tile of interest.
* @param dir The direction in which the vehicle drives on a tile.
* @param type The transporttype of the vehicle.
* @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle.
* @return true iff the vehicle must reverse on the tile.
*/
static inline bool ForceReverse(TileIndex tile, DiagDirection dir, TransportType type, uint subtype)
{
DiagDirection single_entry = GetTileSingleEntry(tile, type, subtype);
return single_entry != INVALID_DIAGDIR && single_entry != dir;
}
/**
* Tests if a vehicle can enter a tile.
*
* @param tile The tile of interest.
* @param dir The direction in which the vehicle drives onto a tile.
* @param user Vehicle information.
* @return true iff the vehicle can enter the tile.
*/
static bool CanEnterTile(TileIndex tile, DiagDirection dir, AyStarUserData *user)
{
/* Check tunnel entries and bridge ramps */
if (IsTileType(tile, MP_TUNNELBRIDGE) && GetTunnelBridgeDirection(tile) != dir) return false;
/* Test ownership */
if (!CanEnterTileOwnerCheck(user->owner, tile, dir)) return false;
/* check correct rail type (mono, maglev, etc) */
switch (user->type) {
case TRANSPORT_RAIL: {
RailType rail_type = GetTileRailType(tile);
if (!HasBit(user->railtypes, rail_type)) return false;
break;
}
case TRANSPORT_ROAD: {
RoadType road_type = GetRoadType(tile, (RoadTramType)user->subtype);
if (!HasBit(user->roadtypes, road_type)) return false;
break;
}
default: break;
}
/* Depots, standard roadstops and single tram bits can only be entered from one direction */
DiagDirection single_entry = GetTileSingleEntry(tile, user->type, user->subtype);
return single_entry == INVALID_DIAGDIR || single_entry == ReverseDiagDir(dir);
}
/**
* Returns the driveable Trackdirs on a tile.
*
* One-way-roads are taken into account. Signals are not tested.
*
* @param dst_tile The tile of interest.
* @param src_tile The originating tile.
* @param src_trackdir The direction the vehicle is currently moving.
* @param type The transporttype of the vehicle.
* @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle.
* @return The Trackdirs the vehicle can continue moving on.
*/
static TrackdirBits GetDriveableTrackdirBits(TileIndex dst_tile, TileIndex src_tile, Trackdir src_trackdir, TransportType type, uint subtype)
{
TrackdirBits trackdirbits = TrackStatusToTrackdirBits(GetTileTrackStatus(dst_tile, type, subtype));
if (trackdirbits == TRACKDIR_BIT_NONE && type == TRANSPORT_ROAD && (RoadTramType)subtype == RTT_TRAM) {
/* GetTileTrackStatus() returns 0 for single tram bits.
* As we cannot change it there (easily) without breaking something, change it here */
switch (GetSingleTramBit(dst_tile)) {
case DIAGDIR_NE:
case DIAGDIR_SW:
trackdirbits = TRACKDIR_BIT_X_NE | TRACKDIR_BIT_X_SW;
break;
case DIAGDIR_NW:
case DIAGDIR_SE:
trackdirbits = TRACKDIR_BIT_Y_NW | TRACKDIR_BIT_Y_SE;
break;
default: break;
}
}
Debug(npf, 4, "Next node: ({}, {}) [{}], possible trackdirs: 0x{:X}", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits);
/* Select only trackdirs we can reach from our current trackdir */
trackdirbits &= TrackdirReachesTrackdirs(src_trackdir);
/* Filter out trackdirs that would make 90 deg turns for trains */
if (type == TRANSPORT_RAIL && Rail90DegTurnDisallowed(GetTileRailType(src_tile), GetTileRailType(dst_tile))) {
trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir);
}
Debug(npf, 6, "After filtering: ({}, {}), possible trackdirs: 0x{:X}", TileX(dst_tile), TileY(dst_tile), trackdirbits);
return trackdirbits;
}
/* Will just follow the results of GetTileTrackStatus concerning where we can
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
* entry and exit are neighbours. Will fill
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
static void NPFFollowTrack(AyStar *aystar, OpenListNode *current)
{
AyStarUserData *user = (AyStarUserData *)aystar->user_data;
/* We leave src_tile on track src_trackdir in direction src_exitdir */
Trackdir src_trackdir = current->path.node.direction;
TileIndex src_tile = current->path.node.tile;
DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir);
/* Information about the vehicle: TransportType (road/rail/water) and SubType (compatible rail/road types) */
TransportType type = user->type;
uint subtype = user->subtype;
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
aystar->num_neighbours = 0;
Debug(npf, 4, "Expanding: ({}, {}, {}) [{}]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
/* We want to determine the tile we arrive, and which choices we have there */
TileIndex dst_tile;
TrackdirBits trackdirbits;
/* Find dest tile */
/* Is src_tile valid, and can be used?
* When choosing track on a junction src_tile is the tile neighboured to the junction wrt. exitdir.
* But we must not check the validity of this move, as src_tile is totally unrelated to the move, if a roadvehicle reversed on a junction. */
if (CheckIgnoreFirstTile(&current->path)) {
/* Do not perform any checks that involve src_tile */
dst_tile = src_tile + TileOffsByDiagDir(src_exitdir);
trackdirbits = GetDriveableTrackdirBits(dst_tile, src_tile, src_trackdir, type, subtype);
} else if (IsTileType(src_tile, MP_TUNNELBRIDGE) && GetTunnelBridgeDirection(src_tile) == src_exitdir) {
/* We drive through the wormhole and arrive on the other side */
dst_tile = GetOtherTunnelBridgeEnd(src_tile);
trackdirbits = TrackdirToTrackdirBits(src_trackdir);
} else if (ForceReverse(src_tile, src_exitdir, type, subtype)) {
/* We can only reverse on this tile */
dst_tile = src_tile;
src_trackdir = ReverseTrackdir(src_trackdir);
trackdirbits = TrackdirToTrackdirBits(src_trackdir);
} else {
/* We leave src_tile in src_exitdir and reach dst_tile */
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDiagDir(src_exitdir));
if (dst_tile != INVALID_TILE && IsNormalRoadTile(dst_tile) && !CanEnterTile(dst_tile, src_exitdir, user)) dst_tile = INVALID_TILE;
if (dst_tile == INVALID_TILE) {
/* We cannot enter the next tile. Road vehicles can reverse, others reach dead end */
if (type != TRANSPORT_ROAD || (RoadTramType)subtype == RTT_TRAM) return;
dst_tile = src_tile;
src_trackdir = ReverseTrackdir(src_trackdir);
}
trackdirbits = GetDriveableTrackdirBits(dst_tile, src_tile, src_trackdir, type, subtype);
if (trackdirbits == TRACKDIR_BIT_NONE) {
/* We cannot enter the next tile. Road vehicles can reverse, others reach dead end */
if (type != TRANSPORT_ROAD || (RoadTramType)subtype == RTT_TRAM) return;
dst_tile = src_tile;
src_trackdir = ReverseTrackdir(src_trackdir);
trackdirbits = GetDriveableTrackdirBits(dst_tile, src_tile, src_trackdir, type, subtype);
}
}
if (NPFGetFlag(&current->path.node, NPF_FLAG_IGNORE_RESERVED)) {
/* Mask out any reserved tracks. */
TrackBits reserved = GetReservedTrackbits(dst_tile);
trackdirbits &= ~TrackBitsToTrackdirBits(reserved);
for (Track t : SetTrackBitIterator(TrackdirBitsToTrackBits(trackdirbits))) {
if (TracksOverlap(reserved | TrackToTrackBits(t))) trackdirbits &= ~TrackToTrackdirBits(t);
}
}
/* Enumerate possible track */
uint i = 0;
while (trackdirbits != TRACKDIR_BIT_NONE) {
Trackdir dst_trackdir = RemoveFirstTrackdir(&trackdirbits);
Debug(npf, 5, "Expanded into trackdir: {}, remaining trackdirs: 0x{:X}", dst_trackdir, trackdirbits);
/* Tile with signals? */
if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TILE_SIGNALS) {
if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir) && IsOnewaySignal(dst_tile, TrackdirToTrack(dst_trackdir))) {
/* If there's a one-way signal not pointing towards us, stop going in this direction. */
break;
}
}
{
/* We've found ourselves a neighbour :-) */
AyStarNode *neighbour = &aystar->neighbours[i];
neighbour->tile = dst_tile;
neighbour->direction = dst_trackdir;
/* Save user data */
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
NPFFillTrackdirChoice(neighbour, current);
}
i++;
}
aystar->num_neighbours = i;
}
/*
* Plan a route to the specified target (which is checked by target_proc),
* from start1 and if not nullptr, from start2 as well. The type of transport we
* are checking is in type. reverse_penalty is applied to all routes that
* originate from the second start node.
* When we are looking for one specific target (optionally multiple tiles), we
* should use a good heuristic to perform aystar search. When we search for
* multiple targets that are spread around, we should perform a breadth first
* search by specifying CalcZero as our heuristic.
*/
static NPFFoundTargetData NPFRouteInternal(AyStarNode *start1, bool ignore_start_tile1, AyStarNode *start2, bool ignore_start_tile2, NPFFindStationOrTileData *target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, AyStarUserData *user, uint reverse_penalty, bool ignore_reserved = false, int max_penalty = 0)
{
/* Initialize procs */
_npf_aystar.max_path_cost = max_penalty;
_npf_aystar.CalculateH = heuristic_proc;
_npf_aystar.EndNodeCheck = target_proc;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
switch (user->type) {
default: NOT_REACHED();
case TRANSPORT_RAIL: _npf_aystar.CalculateG = NPFRailPathCost; break;
case TRANSPORT_ROAD: _npf_aystar.CalculateG = NPFRoadPathCost; break;
case TRANSPORT_WATER: _npf_aystar.CalculateG = NPFWaterPathCost; break;
}
/* Initialize Start Node(s) */
start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start1->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start1, NPF_FLAG_IGNORE_START_TILE, ignore_start_tile1);
NPFSetFlag(start1, NPF_FLAG_IGNORE_RESERVED, ignore_reserved);
_npf_aystar.AddStartNode(start1, 0);
if (start2 != nullptr) {
start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start2->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start2, NPF_FLAG_IGNORE_START_TILE, ignore_start_tile2);
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
NPFSetFlag(start2, NPF_FLAG_IGNORE_RESERVED, ignore_reserved);
_npf_aystar.AddStartNode(start2, reverse_penalty);
}
/* Initialize result */
NPFFoundTargetData result;
result.best_bird_dist = UINT_MAX;
result.best_path_dist = UINT_MAX;
result.best_trackdir = INVALID_TRACKDIR;
result.node.tile = INVALID_TILE;
result.res_okay = false;
_npf_aystar.user_path = &result;
/* Initialize target */
_npf_aystar.user_target = target;
/* Initialize user_data */
_npf_aystar.user_data = user;
/* GO! */
[[maybe_unused]] int r = _npf_aystar.Main();
assert(r != AYSTAR_STILL_BUSY);
if (result.best_bird_dist != 0) {
if (target != nullptr) {
Debug(npf, 1, "Could not find route to tile 0x{:X} from 0x{:X}.", target->dest_coords, start1->tile);
} else {
/* Assumption: target == nullptr, so we are looking for a depot */
Debug(npf, 1, "Could not find route to a depot from tile 0x{:X}.", start1->tile);
}
}
return result;
}
/* Will search as below, but with two start nodes, the second being the
* reverse. Look at the NPF_FLAG_REVERSE flag in the result node to see which
* direction was taken (NPFGetFlag(result.node, NPF_FLAG_REVERSE)) */
static NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, NPFFindStationOrTileData *target, AyStarUserData *user)
{
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
start1.direction = trackdir1;
start2.direction = trackdir2;
return NPFRouteInternal(&start1, ignore_start_tile1, (IsValidTile(tile2) ? &start2 : nullptr), ignore_start_tile2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, user, 0);
}
/* Will search from the given tile and direction, for a route to the given
* station for the given transport type. See the declaration of
* NPFFoundTargetData above for the meaning of the result. */
static NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, NPFFindStationOrTileData *target, AyStarUserData *user)
{
return NPFRouteToStationOrTileTwoWay(tile, trackdir, ignore_start_tile, INVALID_TILE, INVALID_TRACKDIR, false, target, user);
}
/* Search using breadth first. Good for little track choice and inaccurate
* heuristic, such as railway/road with two start nodes, the second being the reverse. Call
* NPFGetFlag(result.node, NPF_FLAG_REVERSE) to see from which node the path
* originated. All paths from the second node will have the given
* reverse_penalty applied (NPF_TILE_LENGTH is the equivalent of one full
* tile).
*/
static NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, NPFFindStationOrTileData *target, AyStarUserData *user, uint reverse_penalty, int max_penalty)
{
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
start1.direction = trackdir1;
start2.direction = trackdir2;
/* perform a breadth first search. Target is nullptr,
* since we are just looking for any depot...*/
return NPFRouteInternal(&start1, ignore_start_tile1, (IsValidTile(tile2) ? &start2 : nullptr), ignore_start_tile2, target, NPFFindDepot, NPFCalcZero, user, reverse_penalty, false, max_penalty);
}
void InitializeNPF()
{
static bool first_init = true;
if (first_init) {
first_init = false;
_npf_aystar.Init(NPFHash, NPF_HASH_SIZE);
} else {
_npf_aystar.Clear();
}
_npf_aystar.loops_per_tick = 0;
_npf_aystar.max_path_cost = 0;
//_npf_aystar.max_search_nodes = 0;
/* We will limit the number of nodes for now, until we have a better
* solution to really fix performance */
_npf_aystar.max_search_nodes = _settings_game.pf.npf.npf_max_search_nodes;
}
static void NPFFillWithOrderData(NPFFindStationOrTileData *fstd, const Vehicle *v, bool reserve_path = false)
{
/* Ships don't really reach their stations, but the tile in front. So don't
* save the station id for ships. For roadvehs we don't store it either,
* because multistop depends on vehicles actually reaching the exact
* dest_tile, not just any stop of that station.
* So only for train orders to stations we fill fstd->station_index, for all
* others only dest_coords */
if (v->current_order.IsType(OT_GOTO_STATION) || v->current_order.IsType(OT_GOTO_WAYPOINT)) {
fstd->station_index = v->current_order.GetDestination();
if (v->type == VEH_TRAIN) {
fstd->station_type = v->current_order.IsType(OT_GOTO_STATION) ? STATION_RAIL : STATION_WAYPOINT;
} else if (v->type == VEH_ROAD) {
fstd->station_type = RoadVehicle::From(v)->IsBus() ? STATION_BUS : STATION_TRUCK;
} else if (v->type == VEH_SHIP) {
fstd->station_type = v->current_order.IsType(OT_GOTO_STATION) ? STATION_DOCK : STATION_BUOY;
}
fstd->not_articulated = v->type == VEH_ROAD && !RoadVehicle::From(v)->HasArticulatedPart();
/* Let's take the closest tile of the station as our target for vehicles */
fstd->dest_coords = CalcClosestStationTile(fstd->station_index, v->tile, fstd->station_type);
} else {
fstd->dest_coords = v->dest_tile;
fstd->station_index = INVALID_STATION;
}
fstd->reserve_path = reserve_path;
fstd->v = v;
}
/*** Road vehicles ***/
FindDepotData NPFRoadVehicleFindNearestDepot(const RoadVehicle *v, int max_penalty)
{
Trackdir trackdir = v->GetVehicleTrackdir();
AyStarUserData user = { v->owner, TRANSPORT_ROAD, RAILTYPES_NONE, v->compatible_roadtypes, GetRoadTramType(v->roadtype) };
NPFFoundTargetData ftd = NPFRouteToDepotBreadthFirstTwoWay(v->tile, trackdir, false, INVALID_TILE, INVALID_TRACKDIR, false, nullptr, &user, 0, max_penalty);
if (ftd.best_bird_dist != 0) return FindDepotData();
/* Found target */
/* Our caller expects a number of tiles, so we just approximate that
* number by this. It might not be completely what we want, but it will
* work for now :-) We can possibly change this when the old pathfinder
* is removed. */
return FindDepotData(ftd.node.tile, ftd.best_path_dist);
}
Trackdir NPFRoadVehicleChooseTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, bool &path_found)
{
NPFFindStationOrTileData fstd;
NPFFillWithOrderData(&fstd, v);
Trackdir trackdir = DiagDirToDiagTrackdir(enterdir);
AyStarUserData user = { v->owner, TRANSPORT_ROAD, RAILTYPES_NONE, v->compatible_roadtypes, GetRoadTramType(v->roadtype) };
NPFFoundTargetData ftd = NPFRouteToStationOrTile(tile - TileOffsByDiagDir(enterdir), trackdir, true, &fstd, &user);
assert(ftd.best_trackdir != INVALID_TRACKDIR);
/* If ftd.best_bird_dist is 0, we found our target and ftd.best_trackdir contains
* the direction we need to take to get there, if ftd.best_bird_dist is not 0,
* we did not find our target, but ftd.best_trackdir contains the direction leading
* to the tile closest to our target. */
path_found = (ftd.best_bird_dist == 0);
return ftd.best_trackdir;
}
/*** Ships ***/
Track NPFShipChooseTrack(const Ship *v, bool &path_found)
{
NPFFindStationOrTileData fstd;
Trackdir trackdir = v->GetVehicleTrackdir();
assert(trackdir != INVALID_TRACKDIR); // Check that we are not in a depot
NPFFillWithOrderData(&fstd, v);
AyStarUserData user = { v->owner, TRANSPORT_WATER, RAILTYPES_NONE, ROADTYPES_NONE, 0 };
NPFFoundTargetData ftd = NPFRouteToStationOrTile(v->tile, trackdir, true, &fstd, &user);
assert(ftd.best_trackdir != INVALID_TRACKDIR);
/* If ftd.best_bird_dist is 0, we found our target and ftd.best_trackdir contains
* the direction we need to take to get there, if ftd.best_bird_dist is not 0,
* we did not find our target, but ftd.best_trackdir contains the direction leading
* to the tile closest to our target. */
path_found = (ftd.best_bird_dist == 0);
return TrackdirToTrack(ftd.best_trackdir);
}
bool NPFShipCheckReverse(const Ship *v)
{
NPFFindStationOrTileData fstd;
NPFFoundTargetData ftd;
NPFFillWithOrderData(&fstd, v);
Trackdir trackdir = v->GetVehicleTrackdir();
Trackdir trackdir_rev = ReverseTrackdir(trackdir);
assert(trackdir != INVALID_TRACKDIR);
assert(trackdir_rev != INVALID_TRACKDIR);
AyStarUserData user = { v->owner, TRANSPORT_WATER, RAILTYPES_NONE, ROADTYPES_NONE, 0 };
ftd = NPFRouteToStationOrTileTwoWay(v->tile, trackdir, false, v->tile, trackdir_rev, false, &fstd, &user);
/* If we didn't find anything, just keep on going straight ahead, otherwise take the reverse flag */
return ftd.best_bird_dist == 0 && NPFGetFlag(&ftd.node, NPF_FLAG_REVERSE);
}
/*** Trains ***/
FindDepotData NPFTrainFindNearestDepot(const Train *v, int max_penalty)
{
const Train *last = v->Last();
Trackdir trackdir = v->GetVehicleTrackdir();
Trackdir trackdir_rev = ReverseTrackdir(last->GetVehicleTrackdir());
NPFFindStationOrTileData fstd;
fstd.v = v;
fstd.reserve_path = false;
assert(trackdir != INVALID_TRACKDIR);
AyStarUserData user = { v->owner, TRANSPORT_RAIL, v->compatible_railtypes, ROADTYPES_NONE, 0 };
NPFFoundTargetData ftd = NPFRouteToDepotBreadthFirstTwoWay(v->tile, trackdir, false, last->tile, trackdir_rev, false, &fstd, &user, NPF_INFINITE_PENALTY, max_penalty);
if (ftd.best_bird_dist != 0) return FindDepotData();
/* Found target */
/* Our caller expects a number of tiles, so we just approximate that
* number by this. It might not be completely what we want, but it will
* work for now :-) We can possibly change this when the old pathfinder
* is removed. */
return FindDepotData(ftd.node.tile, ftd.best_path_dist, NPFGetFlag(&ftd.node, NPF_FLAG_REVERSE));
}
bool NPFTrainFindNearestSafeTile(const Train *v, TileIndex tile, Trackdir trackdir, bool override_railtype)
{
assert(v->type == VEH_TRAIN);
NPFFindStationOrTileData fstd;
fstd.v = v;
fstd.reserve_path = true;
AyStarNode start1;
start1.tile = tile;
start1.direction = trackdir;
RailTypes railtypes = v->compatible_railtypes;
if (override_railtype) railtypes |= GetRailTypeInfo(v->railtype)->compatible_railtypes;
/* perform a breadth first search. Target is nullptr,
* since we are just looking for any safe tile...*/
AyStarUserData user = { v->owner, TRANSPORT_RAIL, railtypes, ROADTYPES_NONE, 0 };
return NPFRouteInternal(&start1, true, nullptr, false, &fstd, NPFFindSafeTile, NPFCalcZero, &user, 0, true).res_okay;
}
bool NPFTrainCheckReverse(const Train *v)
{
NPFFindStationOrTileData fstd;
NPFFoundTargetData ftd;
const Train *last = v->Last();
NPFFillWithOrderData(&fstd, v);
Trackdir trackdir = v->GetVehicleTrackdir();
Trackdir trackdir_rev = ReverseTrackdir(last->GetVehicleTrackdir());
assert(trackdir != INVALID_TRACKDIR);
assert(trackdir_rev != INVALID_TRACKDIR);
AyStarUserData user = { v->owner, TRANSPORT_RAIL, v->compatible_railtypes, ROADTYPES_NONE, 0 };
ftd = NPFRouteToStationOrTileTwoWay(v->tile, trackdir, false, last->tile, trackdir_rev, false, &fstd, &user);
/* If we didn't find anything, just keep on going straight ahead, otherwise take the reverse flag */
return ftd.best_bird_dist == 0 && NPFGetFlag(&ftd.node, NPF_FLAG_REVERSE);
}
Track NPFTrainChooseTrack(const Train *v, bool &path_found, bool reserve_track, struct PBSTileInfo *target)
{
NPFFindStationOrTileData fstd;
NPFFillWithOrderData(&fstd, v, reserve_track);
PBSTileInfo origin = FollowTrainReservation(v);
assert(IsValidTrackdir(origin.trackdir));
AyStarUserData user = { v->owner, TRANSPORT_RAIL, v->compatible_railtypes, ROADTYPES_NONE, 0 };
NPFFoundTargetData ftd = NPFRouteToStationOrTile(origin.tile, origin.trackdir, true, &fstd, &user);
if (target != nullptr) {
target->tile = ftd.node.tile;
target->trackdir = (Trackdir)ftd.node.direction;
target->okay = ftd.res_okay;
}
assert(ftd.best_trackdir != INVALID_TRACKDIR);
/* If ftd.best_bird_dist is 0, we found our target and ftd.best_trackdir contains
* the direction we need to take to get there, if ftd.best_bird_dist is not 0,
* we did not find our target, but ftd.best_trackdir contains the direction leading
* to the tile closest to our target. */
path_found = (ftd.best_bird_dist == 0);
/* Discard enterdir information, making it a normal track */
return TrackdirToTrack(ftd.best_trackdir);
}