mirror of
https://github.com/OpenTTD/OpenTTD.git
synced 2025-01-22 23:26:34 +00:00
268 lines
6.8 KiB
C
268 lines
6.8 KiB
C
/* $Id$ */
|
|
|
|
#include "../stdafx.h"
|
|
#include "../openttd.h"
|
|
#include "../variables.h"
|
|
#include "../command.h"
|
|
#include "../network.h"
|
|
#include "../debug.h"
|
|
#include "ai.h"
|
|
#include "default/default.h"
|
|
|
|
/**
|
|
* Dequeues commands put in the queue via AI_PutCommandInQueue.
|
|
*/
|
|
void AI_DequeueCommands(byte player)
|
|
{
|
|
AICommand *com, *entry_com;
|
|
|
|
entry_com = _ai_player[player].queue;
|
|
|
|
/* It happens that DoCommandP issues a new DoCommandAI which adds a new command
|
|
* to this very same queue (don't argue about this, if it currently doesn't
|
|
* happen I can tell you it will happen with AIScript -- TrueLight). If we
|
|
* do not make the queue NULL, that commands will be dequeued immediatly.
|
|
* Therefor we safe the entry-point to entry_com, and make the queue NULL, so
|
|
* the new queue can be safely built up. */
|
|
_ai_player[player].queue = NULL;
|
|
_ai_player[player].queue_tail = NULL;
|
|
|
|
/* Dequeue all commands */
|
|
while ((com = entry_com) != NULL) {
|
|
_current_player = player;
|
|
|
|
/* Copy the DP back in place */
|
|
memcpy(_decode_parameters, com->dp, sizeof(com->dp));
|
|
DoCommandP(com->tile, com->p1, com->p2, NULL, com->procc);
|
|
|
|
/* Free item */
|
|
entry_com = com->next;
|
|
free(com);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Needed for SP; we need to delay DoCommand with 1 tick, because else events
|
|
* will make infinite loops (AIScript).
|
|
*/
|
|
void AI_PutCommandInQueue(byte player, uint tile, uint32 p1, uint32 p2, uint procc)
|
|
{
|
|
AICommand *com;
|
|
|
|
if (_ai_player[player].queue_tail == NULL) {
|
|
/* There is no item in the queue yet, create the queue */
|
|
_ai_player[player].queue = malloc(sizeof(AICommand));
|
|
_ai_player[player].queue_tail = _ai_player[player].queue;
|
|
} else {
|
|
/* Add an item at the end */
|
|
_ai_player[player].queue_tail->next = malloc(sizeof(AICommand));
|
|
_ai_player[player].queue_tail = _ai_player[player].queue_tail->next;
|
|
}
|
|
|
|
/* This is our new item */
|
|
com = _ai_player[player].queue_tail;
|
|
|
|
/* Assign the info */
|
|
com->tile = tile;
|
|
com->p1 = p1;
|
|
com->p2 = p2;
|
|
com->procc = procc;
|
|
com->next = NULL;
|
|
|
|
/* Copy the decode_parameters */
|
|
memcpy(com->dp, _decode_parameters, sizeof(com->dp));
|
|
}
|
|
|
|
/**
|
|
* Executes a raw DoCommand for the AI.
|
|
*/
|
|
int32 AI_DoCommand(uint tile, uint32 p1, uint32 p2, uint32 flags, uint procc)
|
|
{
|
|
PlayerID old_lp;
|
|
int32 res = 0;
|
|
|
|
/* If you enable DC_EXEC with DC_QUERY_COST you are a really strange
|
|
* person.. should we check for those funny jokes?
|
|
*/
|
|
|
|
/* First, do a test-run to see if we can do this */
|
|
res = DoCommandByTile(tile, p1, p2, flags & ~DC_EXEC, procc);
|
|
/* The command failed, or you didn't want to execute, or you are quering, return */
|
|
if ((CmdFailed(res)) || !(flags & DC_EXEC) || (flags & DC_QUERY_COST))
|
|
return res;
|
|
|
|
/* If we did a DC_EXEC, and the command did not return an error, execute it
|
|
over the network */
|
|
if (flags & DC_AUTO) procc |= CMD_AUTO;
|
|
if (flags & DC_NO_WATER) procc |= CMD_NO_WATER;
|
|
|
|
/* NetworkSend_Command needs _local_player to be set correctly, so
|
|
adjust it, and put it back right after the function */
|
|
old_lp = _local_player;
|
|
_local_player = _current_player;
|
|
|
|
/* Send the command */
|
|
if (_networking)
|
|
/* Network is easy, send it to his handler */
|
|
NetworkSend_Command(tile, p1, p2, procc, NULL);
|
|
else
|
|
/* If we execute BuildCommands directly in SP, we have a big problem with events
|
|
* so we need to delay is for 1 tick */
|
|
AI_PutCommandInQueue(_current_player, tile, p1, p2, procc);
|
|
|
|
/* Set _local_player back */
|
|
_local_player = old_lp;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Run 1 tick of the AI. Don't overdo it, keep it realistic.
|
|
*/
|
|
static void AI_RunTick(PlayerID player)
|
|
{
|
|
_current_player = player;
|
|
|
|
#ifdef GPMI
|
|
if (_ai.gpmi) {
|
|
gpmi_call_RunTick(_ai_player[player].module, _frame_counter);
|
|
return;
|
|
}
|
|
#endif /* GPMI */
|
|
|
|
{
|
|
extern void AiNewDoGameLoop(Player *p);
|
|
|
|
Player *p = GetPlayer(player);
|
|
|
|
if (_patches.ainew_active) {
|
|
AiNewDoGameLoop(p);
|
|
} else {
|
|
/* Enable all kind of cheats the old AI needs in order to operate correctly... */
|
|
_is_old_ai_player = true;
|
|
AiDoGameLoop(p);
|
|
_is_old_ai_player = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* The gameloop for AIs.
|
|
* Handles one tick for all the AIs.
|
|
*/
|
|
void AI_RunGameLoop(void)
|
|
{
|
|
/* Don't do anything if ai is disabled */
|
|
if (!_ai.enabled) return;
|
|
|
|
/* Don't do anything if we are a network-client
|
|
* (too bad when a client joins, he thinks the AIs are real, so it wants to control
|
|
* them.. this avoids that, while loading a network game in singleplayer, does make
|
|
* the AIs to continue ;))
|
|
*/
|
|
if (_networking && !_network_server && !_ai.network_client)
|
|
return;
|
|
|
|
/* New tick */
|
|
_ai.tick++;
|
|
|
|
/* Make sure the AI follows the difficulty rule.. */
|
|
assert(_opt.diff.competitor_speed <= 4);
|
|
if ((_ai.tick & ((1 << (4 - _opt.diff.competitor_speed)) - 1)) != 0)
|
|
return;
|
|
|
|
/* Check for AI-client (so joining a network with an AI) */
|
|
if (_ai.network_client && _ai_player[_ai.network_playas].active) {
|
|
/* Run the script */
|
|
AI_DequeueCommands(_ai.network_playas);
|
|
AI_RunTick(_ai.network_playas);
|
|
} else if (!_networking || _network_server) {
|
|
/* Check if we want to run AIs (server or SP only) */
|
|
Player *p;
|
|
|
|
FOR_ALL_PLAYERS(p) {
|
|
if (p->is_active && p->is_ai && _ai_player[p->index].active) {
|
|
/* Run the script */
|
|
AI_DequeueCommands(p->index);
|
|
AI_RunTick(p->index);
|
|
}
|
|
}
|
|
}
|
|
|
|
_current_player = OWNER_NONE;
|
|
}
|
|
|
|
/**
|
|
* A new AI sees the day of light. You can do here what ever you think is needed.
|
|
*/
|
|
void AI_StartNewAI(PlayerID player)
|
|
{
|
|
#ifdef GPMI
|
|
char library[80];
|
|
char params[80];
|
|
|
|
/* XXX -- Todo, make a nice assign for library and params from a nice GUI :) */
|
|
snprintf(library, sizeof(library), "php");
|
|
snprintf(params, sizeof(params), "daeb");
|
|
|
|
_ai_player[player].module = gpmi_mod_load(library, params);
|
|
if (_ai_player[player].module == NULL) {
|
|
DEBUG(ai, 0)("[AI] Failed to load AI, aborting..");
|
|
return;
|
|
}
|
|
#endif /* GPMI */
|
|
|
|
/* Called if a new AI is booted */
|
|
_ai_player[player].active = true;
|
|
}
|
|
|
|
/**
|
|
* This AI player died. Give it some chance to make a final puf.
|
|
*/
|
|
void AI_PlayerDied(PlayerID player)
|
|
{
|
|
if (_ai.network_client && _ai.network_playas == player)
|
|
_ai.network_playas = OWNER_SPECTATOR;
|
|
|
|
/* Called if this AI died */
|
|
_ai_player[player].active = false;
|
|
|
|
#ifdef GPMI
|
|
gpmi_mod_unload(_ai_player[player].module);
|
|
#endif /* GPMI */
|
|
}
|
|
|
|
/**
|
|
* Initialize some AI-related stuff.
|
|
*/
|
|
void AI_Initialize(void)
|
|
{
|
|
bool tmp_ai_network_client = _ai.network_client;
|
|
#ifdef GPMI
|
|
bool tmp_ai_gpmi = _ai.gpmi;
|
|
#endif /* GPMI */
|
|
|
|
memset(&_ai, 0, sizeof(_ai));
|
|
memset(&_ai_player, 0, sizeof(_ai_player));
|
|
|
|
_ai.network_client = tmp_ai_network_client;
|
|
_ai.network_playas = OWNER_SPECTATOR;
|
|
_ai.enabled = true;
|
|
#ifdef GPMI
|
|
_ai.gpmi = tmp_ai_gpmi;
|
|
#endif /* GPMI */
|
|
}
|
|
|
|
/**
|
|
* Deinitializer for AI-related stuff.
|
|
*/
|
|
void AI_Uninitialize(void)
|
|
{
|
|
Player* p;
|
|
|
|
FOR_ALL_PLAYERS(p) {
|
|
if (p->is_active && p->is_ai && _ai_player[p->index].active) AI_PlayerDied(p->index);
|
|
}
|
|
}
|