mirror of
https://github.com/OpenTTD/OpenTTD.git
synced 2025-01-22 15:11:54 +00:00
920 lines
25 KiB
C
920 lines
25 KiB
C
/* $Id$ */
|
|
|
|
#include "stdafx.h"
|
|
#include "openttd.h"
|
|
#include "bridge_map.h"
|
|
#include "functions.h"
|
|
#include "map.h"
|
|
#include "tile.h"
|
|
#include "pathfind.h"
|
|
#include "rail.h"
|
|
#include "debug.h"
|
|
#include "tunnel_map.h"
|
|
#include "variables.h"
|
|
#include "depot.h"
|
|
|
|
// remember which tiles we have already visited so we don't visit them again.
|
|
static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
|
|
{
|
|
uint hash, val, offs;
|
|
TrackPathFinderLink *link, *new_link;
|
|
uint bits = 1 << dir;
|
|
|
|
if (tpf->disable_tile_hash)
|
|
return true;
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
|
|
val = tpf->hash_head[hash];
|
|
|
|
if (val == 0) {
|
|
/* unused hash entry, set the appropriate bit in it and return true
|
|
* to indicate that a bit was set. */
|
|
tpf->hash_head[hash] = bits;
|
|
tpf->hash_tile[hash] = tile;
|
|
return true;
|
|
} else if (!(val & 0x8000)) {
|
|
/* single tile */
|
|
|
|
if (tile == tpf->hash_tile[hash]) {
|
|
/* found another bit for the same tile,
|
|
* check if this bit is already set, if so, return false */
|
|
if (val & bits)
|
|
return false;
|
|
|
|
/* otherwise set the bit and return true to indicate that the bit
|
|
* was set */
|
|
tpf->hash_head[hash] = val | bits;
|
|
return true;
|
|
} else {
|
|
/* two tiles with the same hash, need to make a link */
|
|
|
|
/* allocate a link. if out of links, handle this by returning
|
|
* that a tile was already visisted. */
|
|
if (tpf->num_links_left == 0) {
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
link = tpf->new_link++;
|
|
|
|
/* move the data that was previously in the hash_??? variables
|
|
* to the link struct, and let the hash variables point to the link */
|
|
link->tile = tpf->hash_tile[hash];
|
|
tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link);
|
|
|
|
link->flags = tpf->hash_head[hash];
|
|
tpf->hash_head[hash] = 0xFFFF; /* multi link */
|
|
|
|
link->next = 0xFFFF;
|
|
}
|
|
} else {
|
|
/* a linked list of many tiles,
|
|
* find the one corresponding to the tile, if it exists.
|
|
* otherwise make a new link */
|
|
|
|
offs = tpf->hash_tile[hash];
|
|
do {
|
|
link = PATHFIND_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile) {
|
|
/* found the tile in the link list,
|
|
* check if the bit was alrady set, if so return false to indicate that the
|
|
* bit was already set */
|
|
if (link->flags & bits)
|
|
return false;
|
|
link->flags |= bits;
|
|
return true;
|
|
}
|
|
} while ((offs=link->next) != 0xFFFF);
|
|
}
|
|
|
|
/* get here if we need to add a new link to link,
|
|
* first, allocate a new link, in the same way as before */
|
|
if (tpf->num_links_left == 0) {
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
new_link = tpf->new_link++;
|
|
|
|
/* then fill the link with the new info, and establish a ptr from the old
|
|
* link to the new one */
|
|
new_link->tile = tile;
|
|
new_link->flags = bits;
|
|
new_link->next = 0xFFFF;
|
|
|
|
link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link);
|
|
return true;
|
|
}
|
|
|
|
static const byte _bits_mask[4] = {
|
|
0x19,
|
|
0x16,
|
|
0x25,
|
|
0x2A,
|
|
};
|
|
|
|
static const byte _tpf_new_direction[14] = {
|
|
0,1,0,1,2,1, 0,0,
|
|
2,3,3,2,3,0,
|
|
};
|
|
|
|
static const byte _tpf_prev_direction[14] = {
|
|
0,1,1,0,1,2, 0,0,
|
|
2,3,2,3,0,3,
|
|
};
|
|
|
|
|
|
static const byte _otherdir_mask[4] = {
|
|
0x10,
|
|
0,
|
|
0x5,
|
|
0x2A,
|
|
};
|
|
|
|
static void TPFMode2(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
uint bits;
|
|
int i;
|
|
RememberData rd;
|
|
|
|
assert(tpf->tracktype == TRANSPORT_WATER);
|
|
|
|
// This addition will sometimes overflow by a single tile.
|
|
// The use of TILE_MASK here makes sure that we still point at a valid
|
|
// tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail.
|
|
tile = TILE_MASK(tile + TileOffsByDir(direction));
|
|
|
|
if (++tpf->rd.cur_length > 50)
|
|
return;
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]);
|
|
if (bits == 0)
|
|
return;
|
|
|
|
assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY());
|
|
|
|
if ( (bits & (bits - 1)) == 0 ) {
|
|
/* only one direction */
|
|
i = 0;
|
|
while (!(bits&1))
|
|
i++, bits>>=1;
|
|
|
|
rd = tpf->rd;
|
|
goto continue_here;
|
|
}
|
|
/* several directions */
|
|
i=0;
|
|
do {
|
|
if (!(bits & 1)) continue;
|
|
rd = tpf->rd;
|
|
|
|
// Change direction 4 times only
|
|
if ((byte)i != tpf->rd.pft_var6) {
|
|
if (++tpf->rd.depth > 4) {
|
|
tpf->rd = rd;
|
|
return;
|
|
}
|
|
tpf->rd.pft_var6 = (byte)i;
|
|
}
|
|
|
|
continue_here:;
|
|
tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i;
|
|
|
|
if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) {
|
|
TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
|
|
tpf->rd = rd;
|
|
} while (++i, bits>>=1);
|
|
|
|
}
|
|
|
|
|
|
/* Returns the end tile and the length of a tunnel. The length does not
|
|
* include the starting tile (entry), it does include the end tile (exit).
|
|
*/
|
|
FindLengthOfTunnelResult FindLengthOfTunnel(TileIndex tile, DiagDirection dir)
|
|
{
|
|
TileIndexDiff delta = TileOffsByDir(dir);
|
|
uint z = GetTileZ(tile);
|
|
FindLengthOfTunnelResult flotr;
|
|
|
|
flotr.length = 0;
|
|
|
|
dir = ReverseDiagDir(dir);
|
|
do {
|
|
flotr.length++;
|
|
tile += delta;
|
|
} while(
|
|
!IsTunnelTile(tile) ||
|
|
GetTunnelDirection(tile) != dir ||
|
|
GetTileZ(tile) != z
|
|
);
|
|
|
|
flotr.tile = tile;
|
|
return flotr;
|
|
}
|
|
|
|
static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 };
|
|
|
|
static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
FindLengthOfTunnelResult flotr;
|
|
TPFSetTileBit(tpf, tile, 14);
|
|
flotr = FindLengthOfTunnel(tile, direction);
|
|
tpf->rd.cur_length += flotr.length;
|
|
TPFSetTileBit(tpf, flotr.tile, 14);
|
|
return flotr.tile;
|
|
}
|
|
|
|
const byte _ffb_64[128] = {
|
|
0,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
4,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
5,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
4,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
|
|
0,0,0,2,0,4,4,6,
|
|
0,8,8,10,8,12,12,14,
|
|
0,16,16,18,16,20,20,22,
|
|
16,24,24,26,24,28,28,30,
|
|
0,32,32,34,32,36,36,38,
|
|
32,40,40,42,40,44,44,46,
|
|
32,48,48,50,48,52,52,54,
|
|
48,56,56,58,56,60,60,62,
|
|
};
|
|
|
|
static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
uint bits;
|
|
int i;
|
|
RememberData rd;
|
|
TileIndex tile_org = tile;
|
|
|
|
if (IsTunnelTile(tile)) {
|
|
if (GetTunnelDirection(tile) != direction ||
|
|
GetTunnelTransportType(tile) != tpf->tracktype) {
|
|
return;
|
|
}
|
|
tile = SkipToEndOfTunnel(tpf, tile, direction);
|
|
}
|
|
tile += TileOffsByDir(direction);
|
|
|
|
/* Check in case of rail if the owner is the same */
|
|
if (tpf->tracktype == TRANSPORT_RAIL) {
|
|
// don't enter train depot from the back
|
|
if (IsTileDepotType(tile, TRANSPORT_RAIL) && GetRailDepotDirection(tile) == direction) return;
|
|
|
|
if (IsTileType(tile_org, MP_RAILWAY) || IsTileType(tile_org, MP_STATION) || IsTileType(tile_org, MP_TUNNELBRIDGE))
|
|
if (IsTileType(tile, MP_RAILWAY) || IsTileType(tile, MP_STATION) || IsTileType(tile, MP_TUNNELBRIDGE))
|
|
/* Check if we are on a bridge (middle parts don't have an owner */
|
|
if (!IsBridgeTile(tile) || !IsBridgeMiddle(tile))
|
|
if (!IsBridgeTile(tile_org) || !IsBridgeMiddle(tile_org))
|
|
if (GetTileOwner(tile_org) != GetTileOwner(tile))
|
|
return;
|
|
}
|
|
|
|
tpf->rd.cur_length++;
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
|
|
if ((byte)bits != tpf->var2) {
|
|
bits &= _tpfmode1_and[direction];
|
|
bits = bits | (bits>>8);
|
|
}
|
|
bits &= 0xBF;
|
|
|
|
if (bits != 0) {
|
|
if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) {
|
|
do {
|
|
i = FIND_FIRST_BIT(bits);
|
|
bits = KILL_FIRST_BIT(bits);
|
|
|
|
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
|
|
rd = tpf->rd;
|
|
|
|
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
|
|
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
|
|
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
tpf->rd = rd;
|
|
} while (bits != 0);
|
|
}
|
|
}
|
|
|
|
/* the next is only used when signals are checked.
|
|
* seems to go in 2 directions simultaneously */
|
|
|
|
/* if i can get rid of this, tail end recursion can be used to minimize
|
|
* stack space dramatically. */
|
|
|
|
/* If we are doing signal setting, we must reverse at evere tile, so we
|
|
* iterate all the tracks in a signal block, even when a normal train would
|
|
* not reach it (for example, when two lines merge */
|
|
if (tpf->hasbit_13)
|
|
return;
|
|
|
|
tile = tile_org;
|
|
direction = ReverseDiagDir(direction);
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
bits |= (bits >> 8);
|
|
|
|
if ( (byte)bits != tpf->var2) {
|
|
bits &= _bits_mask[direction];
|
|
}
|
|
|
|
bits &= 0xBF;
|
|
if (bits == 0)
|
|
return;
|
|
|
|
do {
|
|
i = FIND_FIRST_BIT(bits);
|
|
bits = KILL_FIRST_BIT(bits);
|
|
|
|
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
|
|
rd = tpf->rd;
|
|
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
|
|
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
|
|
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
tpf->rd = rd;
|
|
} while (bits != 0);
|
|
}
|
|
|
|
void FollowTrack(TileIndex tile, uint16 flags, DiagDirection direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data)
|
|
{
|
|
TrackPathFinder tpf;
|
|
|
|
assert(direction < 4);
|
|
|
|
/* initialize path finder variables */
|
|
tpf.userdata = data;
|
|
tpf.enum_proc = enum_proc;
|
|
tpf.new_link = tpf.links;
|
|
tpf.num_links_left = lengthof(tpf.links);
|
|
|
|
tpf.rd.cur_length = 0;
|
|
tpf.rd.depth = 0;
|
|
tpf.rd.pft_var6 = 0;
|
|
|
|
tpf.var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */
|
|
|
|
tpf.disable_tile_hash = HASBIT(flags, 12); /* 0x1000 */
|
|
tpf.hasbit_13 = HASBIT(flags, 13); /* 0x2000 */
|
|
|
|
|
|
tpf.tracktype = (byte)flags;
|
|
|
|
if (HASBIT(flags, 11)) {
|
|
tpf.rd.pft_var6 = 0xFF;
|
|
tpf.enum_proc(tile, data, 0, 0, 0);
|
|
TPFMode2(&tpf, tile, direction);
|
|
} else {
|
|
/* clear the hash_heads */
|
|
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
|
|
TPFMode1(&tpf, tile, direction);
|
|
}
|
|
|
|
if (after_proc != NULL)
|
|
after_proc(&tpf);
|
|
}
|
|
|
|
typedef struct {
|
|
TileIndex tile;
|
|
uint16 cur_length; // This is the current length to this tile.
|
|
uint16 priority; // This is the current length + estimated length to the goal.
|
|
byte track;
|
|
byte depth;
|
|
byte state;
|
|
byte first_track;
|
|
} StackedItem;
|
|
|
|
static const byte _new_track[6][4] = {
|
|
{0,0xff,8,0xff,},
|
|
{0xff,1,0xff,9,},
|
|
{0xff,2,10,0xff,},
|
|
{3,0xff,0xff,11,},
|
|
{12,4,0xff,0xff,},
|
|
{0xff,0xff,5,13,},
|
|
};
|
|
|
|
typedef struct HashLink {
|
|
TileIndex tile;
|
|
uint16 typelength;
|
|
uint16 next;
|
|
} HashLink;
|
|
|
|
typedef struct {
|
|
NTPEnumProc *enum_proc;
|
|
void *userdata;
|
|
TileIndex dest;
|
|
|
|
TransportType tracktype;
|
|
RailTypeMask railtypes;
|
|
uint maxlength;
|
|
|
|
HashLink *new_link;
|
|
uint num_links_left;
|
|
|
|
uint nstack;
|
|
StackedItem stack[256]; // priority queue of stacked items
|
|
|
|
uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir
|
|
TileIndex hash_tile[0x400]; // tiles. or links.
|
|
|
|
HashLink links[0x400]; // hash links
|
|
|
|
} NewTrackPathFinder;
|
|
#define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links)
|
|
#define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs))
|
|
|
|
#define ARR(i) tpf->stack[(i)-1]
|
|
|
|
// called after a new element was added in the queue at the last index.
|
|
// move it down to the proper position
|
|
static inline void HeapifyUp(NewTrackPathFinder *tpf)
|
|
{
|
|
StackedItem si;
|
|
int i = ++tpf->nstack;
|
|
|
|
while (i != 1 && ARR(i).priority < ARR(i>>1).priority) {
|
|
// the child element is larger than the parent item.
|
|
// swap the child item and the parent item.
|
|
si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si;
|
|
i>>=1;
|
|
}
|
|
}
|
|
|
|
// called after the element 0 was eaten. fill it with a new element
|
|
static inline void HeapifyDown(NewTrackPathFinder *tpf)
|
|
{
|
|
StackedItem si;
|
|
int i = 1, j;
|
|
int n;
|
|
|
|
assert(tpf->nstack > 0);
|
|
n = --tpf->nstack;
|
|
|
|
if (n == 0) return; // heap is empty so nothing to do?
|
|
|
|
// copy the last item to index 0. we use it as base for heapify.
|
|
ARR(1) = ARR(n+1);
|
|
|
|
while ((j=i*2) <= n) {
|
|
// figure out which is smaller of the children.
|
|
if (j != n && ARR(j).priority > ARR(j+1).priority)
|
|
j++; // right item is smaller
|
|
|
|
assert(i <= n && j <= n);
|
|
if (ARR(i).priority <= ARR(j).priority)
|
|
break; // base elem smaller than smallest, done!
|
|
|
|
// swap parent with the child
|
|
si = ARR(i); ARR(i) = ARR(j); ARR(j) = si;
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
// mark a tile as visited and store the length of the path.
|
|
// if we already had a better path to this tile, return false.
|
|
// otherwise return true.
|
|
static bool NtpVisit(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection dir, uint length)
|
|
{
|
|
uint hash,head;
|
|
HashLink *link, *new_link;
|
|
|
|
assert(length < 16384-1);
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
|
|
// never visited before?
|
|
if ((head=tpf->hash_head[hash]) == 0) {
|
|
tpf->hash_tile[hash] = tile;
|
|
tpf->hash_head[hash] = dir | (length << 2);
|
|
return true;
|
|
}
|
|
|
|
if (head != 0xffff) {
|
|
if (tile == tpf->hash_tile[hash] && (head & 0x3) == dir) {
|
|
|
|
// longer length
|
|
if (length >= (head >> 2)) return false;
|
|
|
|
tpf->hash_head[hash] = dir | (length << 2);
|
|
return true;
|
|
}
|
|
// two tiles with the same hash, need to make a link
|
|
// allocate a link. if out of links, handle this by returning
|
|
// that a tile was already visisted.
|
|
if (tpf->num_links_left == 0) {
|
|
DEBUG(ntp, 1) ("[NTP] no links left");
|
|
return false;
|
|
}
|
|
|
|
tpf->num_links_left--;
|
|
link = tpf->new_link++;
|
|
|
|
/* move the data that was previously in the hash_??? variables
|
|
* to the link struct, and let the hash variables point to the link */
|
|
link->tile = tpf->hash_tile[hash];
|
|
tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link);
|
|
|
|
link->typelength = tpf->hash_head[hash];
|
|
tpf->hash_head[hash] = 0xFFFF; /* multi link */
|
|
link->next = 0xFFFF;
|
|
} else {
|
|
// a linked list of many tiles,
|
|
// find the one corresponding to the tile, if it exists.
|
|
// otherwise make a new link
|
|
|
|
uint offs = tpf->hash_tile[hash];
|
|
do {
|
|
link = NTP_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
|
|
if (length >= (uint)(link->typelength >> 2)) return false;
|
|
link->typelength = dir | (length << 2);
|
|
return true;
|
|
}
|
|
} while ((offs = link->next) != 0xFFFF);
|
|
}
|
|
|
|
/* get here if we need to add a new link to link,
|
|
* first, allocate a new link, in the same way as before */
|
|
if (tpf->num_links_left == 0) {
|
|
DEBUG(ntp, 1) ("[NTP] no links left");
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
new_link = tpf->new_link++;
|
|
|
|
/* then fill the link with the new info, and establish a ptr from the old
|
|
* link to the new one */
|
|
new_link->tile = tile;
|
|
new_link->typelength = dir | (length << 2);
|
|
new_link->next = 0xFFFF;
|
|
|
|
link->next = NTP_GET_LINK_OFFS(tpf, new_link);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Checks if the shortest path to the given tile/dir so far is still the given
|
|
* length.
|
|
* @return true if the length is still the same
|
|
* @pre The given tile/dir combination should be present in the hash, by a
|
|
* previous call to NtpVisit().
|
|
*/
|
|
static bool NtpCheck(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint length)
|
|
{
|
|
uint hash,head,offs;
|
|
HashLink *link;
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
head=tpf->hash_head[hash];
|
|
assert(head);
|
|
|
|
if (head != 0xffff) {
|
|
assert( tpf->hash_tile[hash] == tile && (head & 3) == dir);
|
|
assert( (head >> 2) <= length);
|
|
return length == (head >> 2);
|
|
}
|
|
|
|
// else it's a linked list of many tiles
|
|
offs = tpf->hash_tile[hash];
|
|
for (;;) {
|
|
link = NTP_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
|
|
assert((uint)(link->typelength >> 2) <= length);
|
|
return length == (uint)(link->typelength >> 2);
|
|
}
|
|
offs = link->next;
|
|
assert(offs != 0xffff);
|
|
}
|
|
}
|
|
|
|
|
|
static const uint16 _is_upwards_slope[15] = {
|
|
0, // no tileh
|
|
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_NW), // 1
|
|
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_SE), // 2
|
|
(1 << TRACKDIR_X_SW), // 3
|
|
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_SE), // 4
|
|
0, // 5
|
|
(1 << TRACKDIR_Y_SE), // 6
|
|
0, // 7
|
|
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_NW), // 8,
|
|
(1 << TRACKDIR_Y_NW), // 9
|
|
0, //10
|
|
0, //11,
|
|
(1 << TRACKDIR_X_NE), //12
|
|
0, //13
|
|
0, //14
|
|
};
|
|
|
|
|
|
#define DIAG_FACTOR 3
|
|
#define STR_FACTOR 2
|
|
|
|
|
|
static uint DistanceMoo(TileIndex t0, TileIndex t1)
|
|
{
|
|
const uint dx = abs(TileX(t0) - TileX(t1));
|
|
const uint dy = abs(TileY(t0) - TileY(t1));
|
|
|
|
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
|
|
/* OPTIMISATION:
|
|
* Original: diagTracks = max(dx, dy) - min(dx,dy);
|
|
* Proof:
|
|
* (dx-dy) - straightTracks == (min + max) - straightTracks = min + // max - 2 * min = max - min */
|
|
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
|
|
|
|
return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR;
|
|
}
|
|
|
|
// These has to be small cause the max length of a track
|
|
// is currently limited to 16384
|
|
|
|
static const byte _length_of_track[16] = {
|
|
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0,
|
|
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0
|
|
};
|
|
|
|
// new more optimized pathfinder for trains...
|
|
// Tile is the tile the train is at.
|
|
// direction is the tile the train is moving towards.
|
|
|
|
static void NTPEnum(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
TrackBits bits, allbits;
|
|
uint track;
|
|
TileIndex tile_org;
|
|
StackedItem si;
|
|
FindLengthOfTunnelResult flotr;
|
|
int estimation;
|
|
|
|
|
|
|
|
// Need to have a special case for the start.
|
|
// We shouldn't call the callback for the current tile.
|
|
si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value.
|
|
si.depth = 0;
|
|
si.state = 0;
|
|
si.first_track = 0xFF;
|
|
goto start_at;
|
|
|
|
for (;;) {
|
|
// Get the next item to search from from the priority queue
|
|
do {
|
|
if (tpf->nstack == 0)
|
|
return; // nothing left? then we're done!
|
|
si = tpf->stack[0];
|
|
tile = si.tile;
|
|
|
|
HeapifyDown(tpf);
|
|
// Make sure we havn't already visited this tile.
|
|
} while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length));
|
|
|
|
// Add the length of this track.
|
|
si.cur_length += _length_of_track[si.track];
|
|
|
|
callback_and_continue:
|
|
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
|
return;
|
|
|
|
assert(si.track <= 13);
|
|
direction = _tpf_new_direction[si.track];
|
|
|
|
start_at:
|
|
// If the tile is the entry tile of a tunnel, and we're not going out of the tunnel,
|
|
// need to find the exit of the tunnel.
|
|
if (IsTunnelTile(tile) &&
|
|
GetTunnelDirection(tile) != ReverseDiagDir(direction)) {
|
|
/* We are not just driving out of the tunnel */
|
|
if (GetTunnelDirection(tile) != direction ||
|
|
GetTunnelTransportType(tile) != tpf->tracktype) {
|
|
// We are not driving into the tunnel, or it is an invalid tunnel
|
|
continue;
|
|
}
|
|
if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
flotr = FindLengthOfTunnel(tile, direction);
|
|
si.cur_length += flotr.length * DIAG_FACTOR;
|
|
tile = flotr.tile;
|
|
// tile now points to the exit tile of the tunnel
|
|
}
|
|
|
|
// This is a special loop used to go through
|
|
// a rail net and find the first intersection
|
|
tile_org = tile;
|
|
for (;;) {
|
|
assert(direction <= 3);
|
|
tile += TileOffsByDir(direction);
|
|
|
|
// too long search length? bail out.
|
|
if (si.cur_length >= tpf->maxlength) {
|
|
DEBUG(ntp,1) ("[NTP] cur_length too big");
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
// Not a regular rail tile?
|
|
// Then we can't use the code below, but revert to more general code.
|
|
if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
|
|
// We found a tile which is not a normal railway tile.
|
|
// Determine which tracks that exist on this tile.
|
|
bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
|
|
bits = (bits | (bits >> 8)) & 0x3F;
|
|
|
|
// Check that the tile contains exactly one track
|
|
if (bits == 0 || KILL_FIRST_BIT(bits) != 0) break;
|
|
|
|
if (IsTileType(tile, MP_STREET) ? !HASBIT(tpf->railtypes, GetRailTypeCrossing(tile)) : !HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
///////////////////
|
|
// If we reach here, the tile has exactly one track.
|
|
// tile - index to a tile that is not rail tile, but still straight (with optional signals)
|
|
// bits - bitmask of which track that exist on the tile (exactly one bit is set)
|
|
// direction - which direction are we moving in?
|
|
///////////////////
|
|
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
si.cur_length += _length_of_track[si.track];
|
|
goto callback_and_continue;
|
|
}
|
|
|
|
/* Regular rail tile, determine which tracks exist. */
|
|
allbits = GetTrackBits(tile);
|
|
/* Which tracks are reachable? */
|
|
bits = allbits & DiagdirReachesTracks(direction);
|
|
|
|
/* The tile has no reachable tracks => End of rail segment
|
|
* or Intersection => End of rail segment. We check this agains all the
|
|
* bits, not just reachable ones, to prevent infinite loops. */
|
|
if (bits == 0 || TracksOverlap(allbits)) break;
|
|
|
|
if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
/* If we reach here, the tile has exactly one track, and this
|
|
track is reachable => Rail segment continues */
|
|
|
|
track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
assert(track != 0xff);
|
|
|
|
si.cur_length += _length_of_track[track];
|
|
|
|
// Check if this rail is an upwards slope. If it is, then add a penalty.
|
|
// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
|
|
if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
|
|
// upwards slope. add some penalty.
|
|
si.cur_length += 4*DIAG_FACTOR;
|
|
}
|
|
|
|
// railway tile with signals..?
|
|
if (HasSignals(tile)) {
|
|
byte m3;
|
|
|
|
m3 = _m[tile].m3;
|
|
if (!(m3 & SignalAlongTrackdir(track))) {
|
|
// if one way signal not pointing towards us, stop going in this direction => End of rail segment.
|
|
if (m3 & SignalAgainstTrackdir(track)) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
} else if (_m[tile].m2 & SignalAlongTrackdir(track)) {
|
|
// green signal in our direction. either one way or two way.
|
|
si.state |= 3;
|
|
} else {
|
|
// reached a red signal.
|
|
if (m3 & SignalAgainstTrackdir(track)) {
|
|
// two way red signal. unless we passed another green signal on the way,
|
|
// stop going in this direction => End of rail segment.
|
|
// this is to prevent us from going into a full platform.
|
|
if (!(si.state&1)) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!(si.state & 2)) {
|
|
// Is this the first signal we see? And it's red... add penalty
|
|
si.cur_length += 10*DIAG_FACTOR;
|
|
si.state += 2; // remember that we added penalty.
|
|
// Because we added a penalty, we can't just continue as usual.
|
|
// Need to get out and let A* do it's job with
|
|
// possibly finding an even shorter path.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
|
return; /* Don't process this tile any further */
|
|
}
|
|
|
|
// continue with the next track
|
|
direction = _tpf_new_direction[track];
|
|
|
|
// safety check if we're running around chasing our tail... (infinite loop)
|
|
if (tile == tile_org) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// There are no tracks to choose between.
|
|
// Stop searching in this direction
|
|
if (bits == 0)
|
|
continue;
|
|
|
|
////////////////
|
|
// We got multiple tracks to choose between (intersection).
|
|
// Branch the search space into several branches.
|
|
////////////////
|
|
|
|
// Check if we've already visited this intersection.
|
|
// If we've already visited it with a better length, then
|
|
// there's no point in visiting it again.
|
|
if (!NtpVisit(tpf, tile, direction, si.cur_length))
|
|
continue;
|
|
|
|
// Push all possible alternatives that we can reach from here
|
|
// onto the priority heap.
|
|
// 'bits' contains the tracks that we can choose between.
|
|
|
|
// First compute the estimated distance to the target.
|
|
// This is used to implement A*
|
|
estimation = 0;
|
|
if (tpf->dest != 0)
|
|
estimation = DistanceMoo(tile, tpf->dest);
|
|
|
|
si.depth++;
|
|
if (si.depth == 0)
|
|
continue; /* We overflowed our depth. No more searching in this direction. */
|
|
si.tile = tile;
|
|
do {
|
|
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
assert(si.track != 0xFF);
|
|
si.priority = si.cur_length + estimation;
|
|
|
|
// out of stack items, bail out?
|
|
if (tpf->nstack >= lengthof(tpf->stack)) {
|
|
DEBUG(ntp, 1) ("[NTP] out of stack");
|
|
break;
|
|
}
|
|
|
|
tpf->stack[tpf->nstack] = si;
|
|
HeapifyUp(tpf);
|
|
} while ((bits = KILL_FIRST_BIT(bits)) != 0);
|
|
|
|
// If this is the first intersection, we need to fill the first_track member.
|
|
// so the code outside knows which path is better.
|
|
// also randomize the order in which we search through them.
|
|
if (si.depth == 1) {
|
|
assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3);
|
|
if (tpf->nstack != 1) {
|
|
uint32 r = Random();
|
|
if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
|
|
if (tpf->nstack != 2) {
|
|
byte t = tpf->stack[2].track;
|
|
if (r&2) swap_byte(&tpf->stack[0].track, &t);
|
|
if (r&4) swap_byte(&tpf->stack[1].track, &t);
|
|
tpf->stack[2].first_track = tpf->stack[2].track = t;
|
|
}
|
|
tpf->stack[0].first_track = tpf->stack[0].track;
|
|
tpf->stack[1].first_track = tpf->stack[1].track;
|
|
}
|
|
}
|
|
|
|
// Continue with the next from the queue...
|
|
}
|
|
}
|
|
|
|
|
|
// new pathfinder for trains. better and faster.
|
|
void NewTrainPathfind(TileIndex tile, TileIndex dest, RailTypeMask railtypes, DiagDirection direction, NTPEnumProc* enum_proc, void* data)
|
|
{
|
|
NewTrackPathFinder tpf;
|
|
|
|
tpf.dest = dest;
|
|
tpf.userdata = data;
|
|
tpf.enum_proc = enum_proc;
|
|
tpf.tracktype = TRANSPORT_RAIL;
|
|
tpf.railtypes = railtypes;
|
|
tpf.maxlength = min(_patches.pf_maxlength * 3, 10000);
|
|
tpf.nstack = 0;
|
|
tpf.new_link = tpf.links;
|
|
tpf.num_links_left = lengthof(tpf.links);
|
|
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
|
|
|
|
NTPEnum(&tpf, tile, direction);
|
|
}
|